
l.SD-I'H-69-72 

ESD ACCESSION LIST 
ESTI Call No. r^°>7j 

Copy No.  /       of / cys. 

ESD RECORD COPY 
RETURN TO 

SCIENTIFIC & TECHNICAL INFORMATION DIVISION 
(ESTI), BUILDING 1211 

Technical Note 1969-13 

On Minimum Time 
Exoatmospheric Interception 

with Fuel Constraints: 
A Closed Loop Solution 

M. Atham 

16 April 1969 

rrepared under electronic Systems Uivision Contract Ar   iy vo/oj-oio/ oy 

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY B 

Lexington, Massachusetts 

ADtffO*2 



The work reported in this document was performed at Lincoln Laboratory, 
a center for research operated by Massachusetts Institute of Technology. 
The work was sponsored by the Department of the Army, Office Chief Re- 
search and Development, under Air Force Contract AF 19(628)-5167. 

This report may be reproduced to satisfy needs of U.S. Government agencies. 

This document has been approved for public release and sale; 
its distribution is unlimited. 



MASSACHUSETTS  INSTITUTE  OF   TECHNOLOGY 

LINCOLN   LABORATORY 

ON MINIMUM TIME EXOATMOSPHERIC INTERCEPTION 
WITH FUEL CONSTRAINTS:   A CLOSED LOOP SOLUTION 

M. ATHANS 

Consultant to Group 42 

TECHNICAL NOTE 1969-13 

16 APRIL  1969 

This document has been approved for public release and sale; 
its distribution is unlimited. 

LEXINGTON MASSACHUSETTS 





ABSTRACT 

The problem considered is that of minimum time intercep- 

tion, subject to fuel constraints, of a nonmaneuvering target 

by an interceptor. The motion of the interceptor is con- 

trolled by application of a thrust vector (with bounded magni- 

tude) and by the control of the thrusting angle relative to, 

say, the interceptor velocity vector. This problem is solved 
2 

using the minimum principle of Pontryagin •  It is shown that 

the time-optimal interception policy is (a) to use maximum 

thrust in the beginning of the control interval and (b) to 

use a constant thrust angle during the thrusting interval. 

The optimal thrust angle is determined analytically as a 

function of the position error, the velocities, and of the re- 

maining fuel. 

Accepted for the Air Force 
Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 
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On Minimum Time Exoatmospheric Interception 

with Fuel Constraints: A Closed Loop Solution 

I   THE EQUATIONS OF MOTION 

The interception problem considered takes place outside the atmosphere. 

Only the planar version of the problem is considered. The geometry of the 

problem is illustrated in Fig. 1. 

Consider a point target T. Let x^t) and y^t) denote the horizontal 

and vertical coordinates, respectively, of the target at time t. Let V~(t) 

and V „(t) denote the target horizontal and vertical velocities. Then, the 

target motion is defined by the four differential equations 

yt) =VxT(t) 

*w -vt) } (i4) 
v^(t) = 0 

y t) = g 

where g is the acceleration of gravity. 

Next consider the interceptor I. Let x_(t) and yT(t) denote its position 

coordinates in the x-y plane and let V T(t) and V T(t) its velocity components 

and let m(t) denote its mass. Suppose that a thrust can be generated by the 

burning of fuel; let c denote the exit velocity of the propellant (assumed 

constant). Let ß(t) denote the rate-of-flow of fuel of the propellant. The 

thrust f(t) is then defined by 

f(t) = cß(t) (1. 2) 

Let t(t) denote the thrust angle with respect to the horizontal. 

Using these variables, the motion of the interceptor is governed by the 
2 

following set of differential equations 



THRUST VECTOR 

Fig. 1.  The geometry of the interception problem. 



yx(t) =vyI(t) 

v(t) ■ =£}sin *(t) -6 
ylv    m(t) 

i(t)  = ^f(t) 

The differential equations for the interception problem can be simplified by 

defining the following position and velocity error variables 

ex(t) £ Xl(t) - x^t) 

e (t) Ä yx(t) - yT(t) 

Vt)ÄTdW-Ta(t) 

vy(t) ^ VyI(t) - VyT(t) 

From Eqs. (l.l), (l.3)> and (l.^) one can verify that the error variables and 

the mass satisfy the differential equations 

Jx(t)  = vx(t) 

ey(t) = vy(t) 

vx(t) = £[|| cos t(t) (1.5) 

vy(t) = g|} sin 1r(t) 

;(t) .r*i 

The five-dimensional vector 



e (t) 
x 

e (t) 
y 

v (t) 
X 

v (t) 
y 

m(t) 

^x(t) (1.6) 

shall serve as the state vector for the optimization problem. 

There are two constraints that will be imposed. The first constraint is 

that the thrust that is generated is bounded by the relation 

0 < f(t) < F    for all t (1.7) 

The second constraint is that the mass of the available propellant is limited. 

Thus, if m is the mass of the interceptor without fuel and m is the mass of 

the interceptor fully fueled, then the mass of the fuel is m — m . 

The problem of interception in minimum time can now be posed as follows: 

Problem 1.1    Given the system described by the differential equations 

(1.5). Suppose that at the initial time t = 0 the values of e (0), e (O), 

v (0), v (O), and m(0) = m are known. Then, determine X     y    ——        o  ' * 

(a) the thrust f(t) (0 < f(t) < F), and 

(b) the thrust angle \|r(t) 

so that 

e (T*) = e (T*) = 0 
x     y 

m(T ) > m 

(1.8) 

(1.9) 

where T is the minimum possible interception time. 

In the following section, the minimum principle will be applied to de- 

termine the necessary conditions for optimality. The necessary condition will 

then be used to determine the optimal thrust and the optimal thrust angle. 



II  THE NECESSARY CONDITIONS FOR OPTIMALITY 

In this section, several relations will be developed which characterize 

the optimal thrust, thrust angle and the time-optimal trajectory. These relit 

tions are obtained by a straightforward application of the minimum principle 

to the Problem 1.1. 

Let p, (t), Pp(t), pn(t), Pjk(t), and p,-(t) denote the costate variables 

(Lagrange multipliers) associated with the state variables e (t), e (t), 

v (t), v (t), and m(t), respectively. Since Problem 1.1 is a time-optimal 

problem, the Hamiltonian function is given by 

H - 1 + ex(t)p1(t) + e (t)p2(t) + vx(t)p3(t) + v (t)p^(t) + m(t)p5(t)(2.1 

which upon substitution of Eq. (1.5) yields 

H - 1 + vx(t)p1(t) + vy(t)p2(t) + |[£J- p3(t) cos t(t) 

+ g*} P^(t) sin t(t) - ^ p5(t) (2.2) 

The costate variables satisfy the differential equations 

^--ssTty-0 (2-3a) 
x 

%<*>--5%y-° (2-3t) 

ÖH 

ÖH 

>3(t)=-ö7Tt7=-pi(t) (2'3 c) 

P5(t) = - ^Ify = ShL  [p3(t)cos *(t) + pu(t)sin <r(t)]      (2.3e) 
m ^tj 



from vhich one immediately deduces that 

p (t) m n (constant) \ 

p (t) = *0 (constant) I 

P3(t) = it3 - «xt    I 

The posed boundary conditions at the terminal time T and the transversality 

conditions yield 

GX(T*} = ey(T*} = ° (2#5) 

P3(T*) . p^T*) = 0 (2.6) 

i: if m(T*) > mo 
P«(T*) = J * * (2.7) 

if m(T ) = me (or f(T ) = 0) 

Since the terminal time T is free and since the Hamiltonian is not an explicit 

function of time, then along the optimal trajectory 

H - 0   for all t € [0,T*] (2.8) 

Let \|r (t) and f (t) denote the optimal thrust angle and thrust, respectively; 

according to the minimum principle they must absolutely minimize the 

Hamiltonian. Noting that 

4fe ■ " =$ P3(t) sin *(t) + ffl M*> cos *(t) (2'9) 

^ = - M p3(t) oos *(t) - =$ ^(t) 8in *(t)   (2-10) 



then it is necessary that 

dH 
stfey !t(t)=**(t) 

= 0 

> 0 

V(t)=**(t) 

From Eqs. (2.8) and (2.U) one deduces that 

*     Pj,(t) 
tan ♦ (t) - ^y 

and from Eqs. (2.10) and (2.12) that 

p,(t) cos i|r (t) + p^(t) sin Y*(t) < 0 

(2.U 

(2.12) 

(2.13) 

(2.ll) 

Squation (2.13) yields the optimal thrust-angle in terms of the costate 

variables. It remains to determine the relationship satisfied by the thrus' 

f (t). Tov/ards this end, define the switching function s(t) by 

A P,(t) P,(t) p (t) 
8(t) - -5ft) oos +<*) + iJtT  sln *(t) "   c (2.15) 

so that the Hamiltonlan (2.2) takes the form 

H = 1 + vx(t) Pl(t) + v (t) p2(t) + f(t) s(t) (2.16) 
" 

The requirement that f (t) minimizes the Hamiltonian yields the relation 

F when s(t) < 0 

f*(t) = 0 when s(t) > 0 

? when s(t) - 0 



Note that if s(t) ■ 0 over a finite time-interval, then Eq. (2.1Tc) corres- 

ponds to the singular condition. 

This set of equations completes the list of relations that roust hold 

along the optimal trajectory. In the next section, these relations will be 

used to deduce additional properties of the optimal thrust-angle \|r (t) and of 

the optimal thrust f (t). 

III.  PROPERTIES OF \|r (t) AND f (t) 

First, it will be shown that the optimal thrust angle \|r (t) must be 

constant throughout the time of thrusting. This conclusion can be deduced 

by the following argument. 

Recall that (see Eq. (2.U)) the costate variables p^(t) and p^(t) are 

given by 

P3(t) - *3 - i^t (3.1) 

Use of the transversality condition (2.6), i.e. 

P3(T*) = p^T*) =0 (3.2) 

yields 

*•-?-? (3.3) 
*1  *2 

or 

*l*k " *2*3 " ° (3.4) 

How consider the relation (2.13) 

8 



tan * (t) - p^TtT (3.5) 

By taking time-derivatives of both sides of Eq. (3-5) and by U6ing Eq.. (2.3) 

and (3«l) one obtains 

dt P^t) 

p1(t)pif(t) - p2(t)p3(t)   "i(% - )t
2
t) - *2(«3 - y) 

pf(t) " pf(t) 

,  1 *   2 3c0 (3.6) 

pf(t) 

in view of Eq. (3-^). This implies that 

tan \|r (t) - constant (3.7) 

and 

i|r (t) = \|r    = constant (3.8) 

•if 
The fact that ^ is constant represents useful information. It cannot 

be as yet evaluated "because one must determine the thrust f (t). For this 

reason, the properties of f (t) will be determined. It will be shown below 

that 

(a) the singular condition (2.17c) does not occur, 

(b) the optimal thrust f*(t) is fuUL-on (f*(t) * F) 

at the beginning of the time-interval until all 

the fuel is consumed at which time it is turned 

off (f*(t) - 0). 



The fact that the singular condition (2.17c) cannot occur is proved by 

contradiction. Let ? denote a subinterval of [0,T ]. Suppose that the 

switching function s(t) is identically zero for all t € ?. Thus, suppose 

(see Eq. (2.15)) 

p (t)        p,(t)        p (t) 
8(t) " rftT COS * + =(tT Sin * "  c  = ° ^r all t G ^ 

(3.9) 

where we have used the fact that \Jr = constant. Since the Hamiltonian must 

be zero along the optimal trajectory (see Eq. (2.8)), substitution of (3.9) 

into (2.l6) yields 

1 + vx(t) JCX + vy(t) n2 = 0   for all t e *      (3ao) 

Differentiation of (3.10) and substitution of (1.5) yields 

S3   *1 cos ** + SO *2 sin ** - °   ft« all t € * 
(3.11) 

Hence, (3.11) implies 

i 

But 

* Äl 
tan \|r    » -   — 

tan \|f    = !üi!! = ü^ (3.13) 
P3(t)      «3 - i^t 

Hence (3.12) and (3.13) imply that 

[*1 + *f] t a *1*3 + *&k (3,l4) 

which can hold if and only if 

10 



^ a «2 a 0 
(3.15) 

But substitution of (3.15) into (3*10) yields 0 ■ 1, obviously a contradiction. 

This implies that the hypothesis s(t) = 0 for all t € ? is false; therefore, 

the singular condition (2.17c) cannot occur. This in turn implies that the 

optimal thrust f (t) can only attain its full-on value f (t) = F or its cutoff 

value f (t) ■ 0. 

The next topic to be investigated deals with the"shape"of f (t). Intu- 

itively, one would expect that the thrust should be turned-on as soon as 

possible so as to attain the maximum velocity possible. This intuitive 

feeling can indeed be verified using the necessary conditions. 

To deduce the switching nature of f (t) one examines the switc 

s(t) (see Eq. (3.9)). Differentiation of s(t) and use of m(t) 

of (2.3) yields 

ritchlng function 

and 

5(t) 
m2(t) 

£-£1  [p3(t) cos ♦* + Plf(t) sin **] 

+ m(t)   [p3(t) cos i|r* + p^(t) sin +*] 

- 4^ [p,(t) cos ** + p,(t) sin ♦*] 
m2(t)c      3 * (3.16) 

and so, Eq.  (3*l6) reduces to 

*l W M 

s(t) « jjTCT [jtx cos \|r   + «2 sin \|r ] (3.17) 

We compute H(t) to deduce that 

£1*1 s(t) - -4-Ua [«. cos ** + *„ sin **] 
m2(t)c  X        2 (3.18) 

11 



From Eqs. (3.17) and (3.18) we obtain the relation 

s<*>-^ji l(t) (3.19) 

which is integrated to yield 

s(t) ■ S(T) exp m(ci)c 
L T 

(3.20) 

Since the exponential function is always positive, it follows that s(t) always 

has the same sign (positive or negative) for all t e [0,T ]. 

At the terminal time T , the switching function s(T ) is given by 

P*(T*) 

■(**) - —V k*(T*> cos ** + Pk(T*) sin ♦*! - -\ 
m(T )  3 4 C 

Since p3(T*) - P^(T*) - 0 (see Eq. (2.6)) it follows that 

(3.21) 

8(T*) B 2  (3.22) 

We claim that 

s(T*) > 0 (3.23) 

To see this suppose the contrary, i.e., that s(T ) <. 0. Then, Eq. (3.22) yields 

P^T ) > 0. But let us recall that 

P5(t)=%^ [p3(t) cos ** + Plf(t) sin **] < 0   {^2k) 

12 



in view of the necessary condition (2.1*0. Hence, if p5(T*) 0, then Eq. 

(3.2*0 implies that 

P5(t) > 0   for all t e [0,T*] (3.25) 

Since the switching function s(t) is given by 

1 #        «   Ps(*) BW ° mTtJ [P3
(t) C0B * + ^ Bln * 1 " "V"   (3.26) 

then the necessary condition (2.14) and Eq. (3»25) yield 

s(t) < 0   for all t € [0,T*] (3.27) 

But this means (see Eq. (2.17a)) that f (t) = F for all t € [0,T ], i.e., that 

full-thrust is applied throughout the control interval; this clearly violates 

the fuel constraint and ] 

Eq. (3.23) must be true. 

the fuel constraint and Eq. (2.7). Therefore, s(T ) < 0 cannot occur and, so, 

* 
It was shown above that s(T ) > 0. We also demonstrated that s(t) always 

.*, 
has the same sign. If s(t) < 0 for all t e [0,T ], then s(t) < 0 for all 

t € [0,T ], which means that f (t) = 0 for all t € [0,T ];  but if no thrust 

is applied, then interception in general is not possible. It, therefore 

follows that 

s(t) > 0   for all t e [0,T*] (3.28) 

and, hence, s(t) is a monotonically increasing time-function. This means that 

s(t) < 0 during the beginning of the time-interval [0,T ], crosses zero at 

some time t = t and then remains positive. This establishes the fact that 
c 

one must thrust in the beginning until all the fuel is exhausted (at t a t ) 

and then coast, I.e., 

13 



f*(t) = F for all t €  [0 

f*(t)  = 0 for all t e (t (3.29) 

To recapitulate; It has been proven that the optimal thrusting program 

Is to apply full thrust as soon as possible; during this thrusting period; 

the angle >jr(t) of the thrust must remain constant. In the following section 

this angle will be found as a function of the state variables. 

The thrust cutoff-time t can be computed because at t t all the c 
available fuel has been exhausted. Since f(t) 

differential equation for the mass is 

F for t e [0,t ], the 
c 

i(t). _ iiil. _ i 
(3.30) 

At t = 0, m(tQ) - mQ while at t V ^c) = V Thus' 

m(tc) m «s m — it 
c c (3.31) 

and, hence, the cutoff time t is given by 

[mo - me] c 
(3.32) 

The coasting period is [t ,T ]. 
C 

IV. A CLOSED-FOBM EXPRESSION FOR THE THRUSTING ANGLE V 

Let us examine the situation at the thrust cutoff time t . Let e (t ), c xN  c" 
e CO, v (t ), v (t ) and m(t ) o m   denote the values of the five state jTcxcyc ce „ 
variables at t , In order to accomplish interception at t ■ T , one must have 

c 

ex(T*) - ey(T*) = 0 C*.l) 

Ik 



Since there is no thrusting for t e [t ,T ], it follows that the velocity 
c 

vector at t tVx).c( must point toward the origin of the e - e plane (see 
V VJ x   y 

Fig. 2). This implies that at t = t the following relations must hold 
c 

e (t ) v (t ) » e (t ) v (t ) 
xx c' yN c7   yx c7 xx c' 

e (t ) v (t ) < 0 
xv c7 xv c7 

e (t ) v (t ) <. 0 
yx c7 yv c7 

(*.2) 

(V.3) 

These relations together with m(t ) = m define a surface S in the five- 
c    c c 

dimensional state space. Clearly, if the state belongs to S . then inter- 
* 

ception is possible. In fact, the time T — t can be evaluated analytically 
c 

and is given by 

T - t - 
c 

e (t ) 
xv c7 

xx c7 

e (t ) 
yN c7 (M) 

It should be now clear how one can determine the thrust angle \|r prior 

to the cutoff time t . Let t e [0,t ] and let e (t), e (t), v (t), v (t), and 

m(t) be the values of the five state variables at that time. Since F and ^ 

are constant from t to t , the differential equations (1.5) are 

*x<*> = v (t) 

ey(t) = vy(t) 

v (t) F                  * 
= SftJ oos * 

V   (t) - iftj 'lD ** 
m(t) c 

(M) 

These equations can be Integrated from t to t to yield: 

15 



18-6-12447 

Fig.  2.    Relation of velocities  and errors at cutoff 
to guarantee  interception. 

16 



m(tc) £ me = m(t) - I  (t, - t) 0K6) 

V*e> «  V /+\   f 
: F cos * , # r v (t) + F cos \|r . /    =  

\      m(t)-f(T-t) 
dt 

v (t) + F cos ** . | log (" S&1 1 F   L»(t) " | (t -t)J (M) 

Using (4.6) one finds that 

vx(tc) - vx(t) + c log 
m(t) • cos ♦ 

C*.8) 

In an identical manner one obtains 

vy(tc) = vy(t) + c log v 
Wt) • sin \|r 

(*-9) 

Finally 

ex(tc) = ex(t) +  VX(T) dx - ex 

t 

(t) + f  ° v,(t) + c log (" S&1 1 cos ir* \     < X U(t)-f(T-t)J 
-dT 

= ex(t) + vx(t)[tc - t) + cos t .c r ciog r  *i   i 
t     U(t) - |(t-t)J 

dT 

C*.K» 

Evaluation of the integral and use of (4.6) yields 

e (t ) . e (t) + v (t)[t - t] + c[t - t] log m(t) cos ** + c[t - t] cos 
X  C      X X      C C v» 

2 2 j 
+ Y ae log me • COB | - Y m(t) log m(t) • cos ♦ 

. 

(«►.ID 

17 



But from (4.6) 

tc - t - |[m(t) - mj {kml2) 

Therefore, e (t ) can be simplified to 

W = ex(t) + f [m(t) " me] vx(t) + T [me log IRS) + m(t) ~ me]cos ** 
(^.13) 

In a similar manner one obtains 

e 
y 

2 r      m I 
(tc) * ey(t) + | [m(t) - me] vy(t) + ^r [»e log j^fy + m(t) - mjsin * 

(4.1*0 
Substituting Eqs. (4.14), (4.13), (4.8), and (4.9) into Eq. (4.2) one obtains 
the equation 

[ex(t) + f[m(t) - me] vx(t) + ^ q(t) COB +*].[vy(t) + c log [=&*]. Bin **] 
^ e ™ 

- [ey(t) + |[m(t) - me] vy(t) + ^ q(t) Bin **]-[vx(t) + c log[^]. cos **J 

(*.15) 

where q(t) is defined for the sake of notational simplicity hy 

q(t)Ä-m log/sLti)+m(t) _ m (4.16) 
x e r 

By performing the indicated multiplications, Eq. (4.15) reduces to 

[ö(t)ex(t) + r(t)vx(t)J sin t* - [o(t)ey(t) + r(t)vy(t) |cos i|r* 

= ey(t)vx(t) - ex(t)vy(t) (4.17) 

18 



where o(t) and r(t) are defined by 

o(t) Ä  c log ( S^i) (4.18) 

r(t) =   jr- m(t) log (sbl)    - m(t) + m (4.19) 

In this manner,  the problem reduces to the solution of Eq.   (4.17)  for 

if  .     ,7e note that Eq.   (4.17)  is of the form 

Mr -K 
a (t)  sin \jr    + a (t)  cos \Jr    = b(t) (4.20) 

where 

a^t) =      6(t)ex(t) + r(t)vx(t) (4.21) 

•( 
a2(t) S-   |o(t)ey(t) +r(t)vy(t)' (4.22) 

But 

b(t) S     e  (t)v (t)  - e  (t)v(t) 

a1(t)sln \|r* + a2(t)cos i|r* =      /a^(t) + a^(t)    sin 

(4.23) 

-1 a2(t) 

*+tan      aTTtl (2.21*) 

Therefore,  from Eqs.   (4.24) and (4.20) we deduce the desired solution 

* -1 f    = sin b(t) 

J^it) + a*(t) 
- tan -1 

a2(t) 

qttT (4.25) 

19 



If the relation 

b(t) 

V fi^(t) + a^(t) 
< 1 (h.26) 

holds, then interception is possible. Otherwise, the interceptor will miss 

the target. 

The complete structure of the control system that generates the optimal 

thrust angle ^ is illustrated in block diagram form in Figs. 3 through 6 . 
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CO 
Lü 
_l 
O 
< 
er 

CL 
ÜJ 
O a 
LU 

Xj(t) 

O— 

o— 

vxIai 
o  

V11 
o— 

HH 

HM 

H^ 

ö Ö o 
xT(t)        yT(t)       VxT(t)     VyT(t) 

N V ' 
TARGET   VARIABLES 

-► e.U) 

-► ey(t) 

-► v„(t) 

-►   vy (t) 

Fig. 3-  Generation of error variables [cf. Eq. (1.4)] 

TRUE 
MASS 

** q(t) 

*-8lt) 

ylt) 

Fig. h.    Generation of auxiliary time variables q(t), 6(t), 
and r(t) [cf. Eqs. (k.l6),   (4.l8), (4.19)]. me is the empty 
interceptor mass, c is the equivalent exit velocity, and F 
is the maximum thrust. 
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e,(t)o 

ey(t)o- 

vx(t)o 

-M n 1/ a, (t) 

+ 

■W n 

-M n 

■H s a2(t) 

+ [ 

) H 

Vy(t) O- ■^ n 

— b(t) 

Fig. 5- Generation of auxiliary time functions an(t), ag(t), 
and b(t) [cf. Eqs . (U.2l), (^.22), (^.23)] from the error 
variables (see Fig. 3) and the auxiliary variables y(t) and 
6(t) (see Fig. k). 
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NO => RUN OUT OF FUEL; NO NEED TO FIND V 
|l8-8-1?45l] 

YES => COMPUTE THRUST ANGLE ^ 

SET THRUST TO FULL ON f*(t) = F 

a/t) 

o2{t) 
o   f  » 

—M n 

a2(t)/ai(t) 

+ \ 

tarfV) 

t » n 

b(t) 
o— 

sin'V) 

tilt) 

b(t)/^(t) 

YES 

NO => CANNOT 
INTERCEPT 

Fig. 6. Generation of optimal thrust and thrust direction angle i|>*. 
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